skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhao, Yifang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Integrated circuit design is a highly complex and time-consuming process. Leveraging large language models (LLMs) for automating hardware design generation is receiving increasing attention. A prominent challenge is that the inherent structure of the text is overlooked during the training process. Existing efforts focus on supervised fine-tuning LLMs to acquire specialized knowledge in hardware design, without considering the conflict between LLMs' linear data processing and the structural nature inherent in hardware design. In this work, we propose a novel LLM-based reinforcement learning (RL) framework that integrates Abstract Syntax Trees (ASTs) and Data Flow Graphs (DFGs). Our approach enhances the accuracy of generated hardware code by capturing the syntactic and semantic structures of hardware designs. Experimental results show that the SFT-RL model integrated with Text, AST, and DFG achieves notable improvements: a 12.57% increase on VerilogEval-Human and a 5.49% increase on VerilogEval-Machine, outperforming GPT-4; a 14.29% improvement on RTLLM, approaching GPT-4. 
    more » « less
    Free, publicly-accessible full text available November 20, 2026
  2. The increasing complexity of integrated circuit design requires customizing Power, Performance, and Area (PPA) metrics according to different application demands. However, most engineers cannot anticipate requirements early in the design process, often discovering mismatches only after synthesis, necessitating iterative optimization or redesign. Some works have shown the promising capabilities of large language models (LLMs) in hardware design generation tasks, but they fail to tackle the PPA trade-off problem. In this work, we propose an LLM-based reinforcement learning framework, PPA-RTL, aiming to introduce LLMs as a cutting-edge automation tool by directly incorporating post-synthesis metrics PPA into the hardware design generation phase. We design PPA metrics as reward feedback to guide the model in producing designs aligned with specific optimization objectives across various scenarios. The experimental results demonstrate that PPA-RTL models, optimized for Power, Performance, Area, or their various combinations, significantly improve in achieving the desired trade-offs, making PPA-RTL applicable to a variety of application scenarios and project constraints. 
    more » « less
    Free, publicly-accessible full text available November 29, 2026
  3. Free, publicly-accessible full text available October 26, 2026
  4. Free, publicly-accessible full text available September 8, 2026
  5. Free, publicly-accessible full text available June 29, 2026
  6. Free, publicly-accessible full text available February 1, 2026
  7. Free, publicly-accessible full text available December 2, 2025